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Abstract. We introduce a diffusion model for energetically inhomogeneous systems. A random walker
moves on a spin-S Ising configuration, which generates the energy landscape on the lattice through the
nearest-neighbors interaction. The underlying energetic environment is also made dynamic by properly
coupling the walker with the spin lattice. In fact, while the walker hops across nearest-neighbor sites, it
can flip the pertaining spins, realizing a diffusive dynamics for the Ising system. As a result, the walk
is biased towards high energy regions, namely the boundaries between clusters. Besides, the coupling
introduced involves, with respect the ordinary diffusion laws, interesting corrections depending on either
the temperature and the spin magnitude. In particular, they provide a further signature of the phase-
transition occurring on the magnetic lattice.

PACS. 5.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 05.40.Fb Random walks and Levy flights
– 05.60.-k Transport processes

1 Introduction

The problem of diffusion on inhomogeneous media is at-
tracting much attention, due to its fundamental impor-
tance in nearly every field of science and engineering [1–7].
In fact, for a proper description of many diffusive sys-
tems (for example proteins “sliding” on DNA, diffusion of
charge carriers in solids, flow through porous media, etc),
apart from the motion of the particles, also the underlying
environment must be included [8,9].

There are several ways to introduce disorder or, more
generally, inhomogeneity. For example, it can be geomet-
ric, due to an irregular lattice structure, or energetic. In
the latter case, the lattice sites (or bonds) are assigned
different energy states and, consequently, the walker is
biased towards sites corresponding to potential wells (or
small energy barriers). Moreover, disorder can be deter-
ministic or random and it can be dynamic (the environ-
ment is renewed at each jump of the walker) [1,10], or
static (the environment is frozen in a particular configu-
ration) [11,12]. Particles diffusing on such structures can
also be endowed with memory effects [13,14], or be influ-
enced by the distribution of other diffusing particles on
the same structure [15].

In our model, an evolving, inhomogeneous energy land-
scape is introduced, by coupling the random walk with a
spin-S Ising system. More precisely, we assume a spin-S ar-
bitrary lattice and we let a random walker moving on it.
The relevant energy landscape is then obtained by relat-
ing each lattice site with the pertaining nearest-neighbor
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interaction according to the Ising Hamiltonian. In other
words, the walker moves on a lattice where each site is
occupied by a spin σi ∈ [−S, S] and which generates the
energy environment through the Ising interaction. Now, if
we make the Ising ferromagnet be in contact with a heat-
bath, by varying the temperature parameter the spin con-
figuration evolves and then, also the energy landscape is
modified. In particular, the temperature acts as a disper-
sion parameter [16], being able to control the roughness of
the energetic environment. In fact, when the temperature
is sufficiently low, the lattice is ferromagnetic and the en-
ergy landscape is flat, vice versa when T → ∞ the energy
landscape is rugged.

However, differently from the dynamic, inhomogeneous
systems introduced in previous works [1,10], where the
energy landscape was updated from external forces, here
we assume that the random walker, while hopping across
the sites of the underlying lattice, flips the relevant spins.
Hence, during the diffusion of the walker on the lattice
the magnetization and the energy properly vary. In fact,
as we will see later, by defining a suitable spin-flip prob-
ability, the random walker is able to provide a diffusive
thermal dynamics [17,18]. In particular, as a result of our
assumptions, the walker is now biased towards such sites
that, by flipping the relevant spin, an energy gain can be
achieved.

Therefore, the problem of the RW on an inhomoge-
neous energy landscape is non trivially extended to the
problem of their interaction: the RW affects, and is biased
by, the energy landscape. In other words, there are two in-
terplaying stochastic processes: the motion of the walker
and the evolution of the spin configuration.
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Our work will be mainly numerical and the algorithm
implemented is very general, being easily appliable to ar-
bitrary lattices, made up of spins which can assume an
arbitrary, finite number of states.

The aim of this work is then to characterize the ran-
dom walk introduced, especially highlighting how its in-
teraction with the magnetic lattice affects its diffusion.
In particular, it would turn out to be interesting to re-
late the behavior of the walker with the evolution of the
energy landscape, namely with the evolution of the mag-
netic lattice. Hence, we analyze our biased random walker
(BRW) at different temperatures and then we compare re-
sults with those, already known, relevant to the ordinary,
unbiased random walker (URW). Interestingly, as we will
show, though their asymptotic behaviors agree [19–21],
temperature dependent corrections have to be introduced.
In particular, the functional laws describing the behavior
of our BRW are URW-consistent, while the pertinent mul-
tiplicative factors peak at Tc. Therefore, effects due to the
coupling between the walker and the magnetic system are
strongest as the latter undergoes its phase transition. In
other words, the diffusion of the BRW provides signatures
of the phase transition occurring on the magnetic lattice.
Besides, in order to understand to what extent the spin
magnitude influences the walker diffusion, we take into
account both spin-1/2 and spin-1 Ising systems.

Finally, notice that all the measures that are being
explained are performed after the magnetic system has
reached a steady state.

The layout of the paper is as follows. In Section 2 we
explain how the energy landscape is generated and how
our BRW can update it; we also underlines the differences
with respect to the URW. In Section 3 we show how, un-
der some conditions, such differences can vanish and then
the URW is recovered. In Sections 4–7 we describe the nu-
merical simulations performed, useful to characterize the
walker behavior. We especially analyze in details the cov-
ering time, the number of returns to the origin and of
distinct sites visited since they better emphasize the re-
lationship between the walker and the magnetic lattice.
Finally, Section 8 contains a summary and a discussion of
results.

2 Diffusive dynamics

In this work we deal with a RW moving on, and interact-
ing with the energy landscape generated by the following
Hamiltonian applied to the magnetic configuration of a
spin-S Ising system:

H = − J

S2

N∑

i,j

Aij σiσj +
h

S

N∑

i

σi. (1)

The spin variable σ may take the (2S+1) values −S,−S+
1, . . ., S − 1, S and Aij is the adjacency matrix associ-
ated to the arbitrary network where spins are placed on.
Hence, the first sum only involves nearest neighbor pairs,
according to the chemical distance.

Though our analysis has been performed on a toroidal
squared lattice with J = 1, h = 0 in order to focus the at-
tention on the very dynamical effects, in the remaining of
this section we make assumptions on neither the structure
of the lattice nor on the spin magnitude (though finite).

Hitherto we have just explained how the energy land-
scape is generated starting from a discrete spin configura-
tion, while now we will describe how the coupling between
the magnetic lattice and the walker works.

The random walker is assumed to be able to move
on nearest-neighbor sites or stop, and it can also flip the
spin pertaining to the reached site (notice that, when the
spin magnitude is very large, the latter procedure can be
quite complex due to a (2S + 1)-manifold choice). There-
fore, our model displays two interplaying stochastic pro-
cesses: the diffusion of the walker on the lattice and the
evolution of the spin configuration. Such processes can
be considered consequentially (firstly decide the site to
move towards and then select the relevant spin state or
vice versa) or contemporary (consider all possible combi-
nations spin+site and choose one of them). Indeed, in any
case, there exist many different ways to rule this system,
ranging from completely random to completely determin-
istic.

The assumptions for our model have been taken in or-
der to realize a proper diffusive dynamics for the Ising
model. Such a dynamics was introduced in a previous pa-
per [17] where the thermodynamics aspects were investi-
gated. In particular, it was found that our diffusive ther-
mal dynamics is actually able to drive the system towards
a non canonical equilibrium state, which depends on the
temperature but not on the particular initial spin con-
figuration. As far the critical behavior, it preserves the
universality class, though the critical temperature is in-
creased:

T S=1/2
c = 2.602(1) (2)

T S=1
c = 1.955(2). (3)

Because of this sort of difference with respect the canoni-
cal dynamics, it is worth underlining that, in the remain-
ing of the paper, when we refer to the critical range or
temperature, it is always meant according to the diffusive
dynamics.

Now, let us see in detail how the probability running
our RW is defined. First of all, it contemporary takes into
account the motion of the walker and the spin-flip proce-
dure, besides, it is local since it only depends on the mag-
netic configuration of RW’s nearest-neighbor sites. More
precisely:

PT (s, j|s0, i) =
pT (s, j)(Aij + δij)∑
{s′}

∑zi

j=0 pT (s′, j)
(4)

represents the probability that the walker, being on site i
with coordination number zi, jumps on a n.n. site j and
realizes the magnetic configuration s. The spin configura-
tion before the jump is denoted as s0, while {s′} is the
set of the new possible configurations. Furthermore,

pT (j, s) =
1

1 + e[β∆Ej(s)]
(5)
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is derived from the usual Glauber probability (see [17] for
more details). Also,

∆Ej(s) =
(
σi

j − σf
j

) J

S2

∑

j∼k

σk, (6)

is the energy variation consequent to the process, where
σi

j and σf
j represent the spin-state on site j before and

after the flip procedure, respectively.
You can notice that, at each step, the walker can

choose among zi + 1 sites to move towards (or stay on)
and, contemporary, it can also choose if flip the relevant
spin, being biased in order to achieve an energy gain.

Hence, all in all, there are (zi + 1) × (2S + 1) options
including that the magnetic configuration of the system,
as well as the position of the walker, will possibly remain
unchanged.

Of course, in a d-dimensional hypercubic lattice, the
number of nearest-neighbors does not depend on the par-
ticular site and zi = 2d, ∀i.

Notice that, the hopping rate between two sites is, in
general, different going forward and backwards, so that
the random walk is asymmetric. Consequently, as stressed
in [17], this kind of dynamics does violate the detailed
balance condition and the equilibrium states achieved are
non-canonical.

In traditional models of diffusion on energetic land-
scapes, the jump rate is typically controlled by the local
energy at the start point or by the energy-barrier height
between start and end points [12]. Though previous equa-
tions imply that spin-flips occur on the site where the
walker is moving towards, we can as well think our model
in terms of energetic barriers. In fact, energy-barriers are
lower for nearest-neighbor sites which let, by means of
spin-flip, a higher energy gain. Furthermore, such behav-
ior of the walker is consistent with the physical systems
which have inspired the model [17,18].

It is now worth comparing our RW with the traditional
unbiased random walker, usually defined according to the
probability: P(i, j) = Aij

zi
, since, at every step the walker

must move and the hopping probabilities are isotropic and
do not depend on time. In this work, in order to establish
a stronger analogy with our BRW, we will endow the un-
biased random walker with a waiting probability so that,
from site i, the possible, equivalent, choices are zi + 1.
In other words, we allow repetitions within the succession
defining the trajectory of the walker and

P(i, j) =
Ai,j + δi,j

zi + 1
, (7)

where j is a nearest neighbor of i’s or, possibly, the site
i itself. In the following, we will refer to this able-to-stop
unbiased random walker as SURW.

It is known [22] that, for the URW, the possibility of
staying on the same site is crucial in the short time regime,
while in the long time behavior it has no important con-
sequences. As we will see later, an analogous long-time
effect is also experienced by our BRW.

3 BRW recovers URW

As mentioned in Section 1, the temperature parameter can
tune the roughness of the energy landscape. In particular,
when T is sufficiently low, the magnetic lattice is homo-
geneous, the energy landscape is flat and we expect to re-
cover the URW case. On the other hand, when T → ∞, a
completely disordered lattice and, consequently, a rugged
energy environment, is achieved. Nevertheless, since the
energy variations consequent to whatever possible spin-
flip would be very small compared with β, we again expect
to recover the URW case. Then, in this section, we want to
prove that equation (4) recovers equation (7), under the

conditions β → ∞ and |
N∑

i=0

σi| = NS, or β → 0. Firstly,

let us consider the former case with σi = S, ∀i. Suppose
that the walker jumps from site i to j, with coordination
numbers zi and zj respectively and that, consequently, σj

is flipped in σ′. Then, equation (4) can be rewritten as

P (i, j, σj = σ′) =
[1 + Ezj(S−σ′)]−1

∑zi

k=0

∑2S
l=0

1
1+Ezkl

, (8)

where E = eJβ/S and i’s nearest-neighbors have been
numbered from 0 (the walker remains on i) to zi. We also
dropped the factor (Aij + δij), because we assume j to be
linked to i, or, possibly, i = j. Now, since β → ∞, then
E → ∞ and we can write:

P0 (i, j, σj = σ′) =
{ 1

zi+1 + O(E−ζ) if σ′ = S

O(E−zj(S−σ′)) if σ′ �= S,
(9)

where
ζ = min

k=0,...,zi

(zk).

Conversely, when β → 0, then E → 1, and, recalling that
S is finite, you can easily find that:

P∞(i, j, σj = σ′) =
1

(zi + 1)(2S + 1)
+ O(βJξ), (10)

where
ξ = max

k=0,...,zi

(zk).

The previous equation depends neither on σ′, nor on the
magnetic configuration of the lattice and hence, all in all,
the probability of jumping from a site to another recovers
equation (7).

In the following sections we analyze the behavior of
the walker introduced, focusing the attention on those as-
pects which are mostly affected by its interaction with
the magnetic lattice. Results will be further stressed by
comparison with their SURW counterparts.

4 Visit lattice

In this work a task of ours is to relate the motion of the
walker with the magnetic configuration of the Ising lattice



532 The European Physical Journal B

Fig. 1. (Color online) Magnetic (left panel) and Visit (right
panel) lattice for a 100 × 100 spin-1 Ising system subject to
the diffusive dynamics described in Section 2. The sample, ini-
tially paramagnetic, was suddenly cooled at low temperatures
(T < Tc). Note that null spins (white) arrange themselves just
on those sites such that their n.n. provide, all in all, a neutral
magnetization; these sites usually belong to cluster boundaries.
In the left panel the warmest colors are reserved to the most
visited sites which are the ones corresponding to boundaries
between clusters; analogous results hold for spin-1/2.

representing the energy landscape. To this aim, we intro-
duce the visit lattice, meant as the L × L array whose
elements are incremented by a unit each time the walker
passes through the pertaining site. In Figure 1 such a lat-
tice is compared with the magnetic one. From equation (4)
we expect the walker to be attracted towards high energy
regions which, in our model, corresponds to borders be-
tween clusters. Of course, this attraction affects the dis-
tribution of visit numbers on the lattice provided that the
parameter β is not so small to make any spin-flip equally
probable (see Eq. (10)). Actually, in Figure 1, the attrac-
tion felt by the walker is strong enough to generate de-
tectable effects on the visit lattice: as expected, the most
“popular sites” are just those belonging to the perimeter
of cluster. As a consequence, the visit lattice mirrors the
magnetic lattice: looking at the former one can derive the
spin configuration and vice versa.

5 Local energy

In the previous section we showed that, according to equa-
tion (4), the BRW does not move freely, but it can be
forced to stay nearby high energy regions. Hence, we ex-
pect the local energy εloc to be larger than the energy
of the whole system ε. Now, we wonder if the difference
between such quantities is somehow temperature depen-
dent. Therefore, we consider the quantity ε̃ = 〈εloc〉 − 〈ε〉,
where, we recall, εloc represents the energy relevant to the
site i occupied by the walker, namely εloc = σi

∑
i∼j σj .

As shown in Figure 2, as long as the temperature is suf-
ficiently low, the lattice appears homogeneous and ε̃ is
null. However, heating the sample, some domains develop
and, since the walker verges on their borders, 〈εloc〉 can in-
crease more than 〈ε〉 so that ε̃ rises. While approaching the
critical temperature, more and more clusters arise and the
walker is more and more likely to be found on their bound-
aries, which explains the maximum in Tc. Conversely, at
high temperature, when the paramagnetic phase has been
reached, 〈ε〉 gets to 〈εloc〉.
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Fig. 2. 〈εloc〉 − 〈ε〉 for a 240 × 240 spin-1/2 and spin-1 Ising
systems initialized ferromagnetic and then heated. The two
plots can be easily distinguished, as they peak at the relevant
critical temperature (dashed line) and the former case shows a
higher value of Tc.

Note also that, in Figure 2, the peak relevant to the
spin-1 case is sharper, which means a stronger interaction
between the walker and the magnetic lattice.

We also measure ε̃ for an unbiased random walker al-
lowed to rest and moving on an Ising lattice subject to
a non-diffusive dynamics. Of course, in this situation, the
walker is completely useless for the evolution of the sys-
tem, nevertheless its behavior underlines that results ob-
tained for the BRW are really due to its interaction with
the magnetic system. In fact, we find that, for the SURW,
ε̃ remains close to zero without displaying any significant
dependence on the temperature.

Therefore ε̃ provides a signature that, as far our BRW,
at the critical temperature interesting phenomena occur,
not only in thermodynamics terms.

6 Covering time

The previous two sections pointed out that the hopping-
flipping probability, defined in Section 1, actually biases
the walker towards high energy regions and that, in the
critical range, the coupling between the walker and the
magnetic lattice is even more important. Hence, the phase
transition also emerges from the behavior of the walker;
this interesting feature will be especially taken into ac-
count in the following analysis. In particular, we now con-
sider the covering time, namely the time (in unit step)
taken by the walker to visit all N sites making up the
lattice.

We recall that the lattice is squared and endowed with
periodic boundary conditions, so that the walker can ac-
tually cover an infinite distance on it.

As depicted in Figure 3, for both spin-1/2 and spin-1
systems, the covering time TN measured for the BRW
increases with the size of the lattice and a temperature
dependence is also noticeable. In particular, there is an
increase in the covering time at about the critical temper-
ature, which has been previously measured [17] revealing
to be fairly larger than the canonical one (Eqs. 2 and 3).
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Fig. 3. (Color online) Covering time versus temperature and size of the lattice for the biased random walker moving on a
spin-1/2 (left panel) and spin-1 (right panel) Ising system. In both cases the outline depends strongly on the size and the
temperature affects the covering time just during the critical regime.

As far the dependence on the total number of sites N ,
it is consistent with the logarithmic law:

TN = αN(logN)2 (11)

found by analytical [23,24] as well as numerical [25] meth-
ods applied to an unbiased random walk. Then, the very
effects due to the bias have to be tracked down in the
multiplicative factor α. In fact, by fitting, according to
equation (11), the data relevant to both spin systems, we
evidenced that α

S=1/2
BRW and αS=1

BRW depend on T and are
larger than αURW found in [23,25]. Notice that both the
possibility of maintaining the same position and the in-
teraction with the magnetic lattice concur in lengthening
the covering time, but the role played by the latter is non
trivial. In particular, it makes α

S=1/2
BRW and αS=1

BRW exhibit
a maximum at about Tc, namely, in the critical region,
it takes more time for the BRW to cover the lattice. On
the other hand, the SURW displays a covering time still
consistent with equation (11) but, of course, independent
on T . Note that, as shown in Figure 4, within the error
(<2%),

αSURW ≤ α
S=1/2
BRW ≤ αS=1

BRW. (12)

As expected, the BRW, with respect the SURW, is slowed
down since it may be “trapped” nearby high energy
regions constituted by sites where several, energetically
favorable, spin-flips are possible. On the other hand, the
quantities in equation (12) are all comparable at low tem-
peratures. In fact, during the ferromagnetic phase, when
T 	 Tc, the lattice appears homogeneous and the bias has
no effect; an analogous phenomenon is expected at very
high temperatures (in Sect. 3 we proved that, indeed, in
these cases the BRW recovers the SURW). Besides, since
in the spin-1 case the walker has to manage a greater num-
ber of possibilities, the slowing down effect is even higher
and the relevant peak in Figure 4 is more marked.

Note that, with a non-diffusive dynamics, the time re-
quired to scan each lattice site at least once can be much
smaller. For example, by adopting the type-writer se-
quence, TN is reduced by a factor 4αBRW (logL)2. For this
reason, our diffusive dynamics may be though as “slow”.

−1 −0.5 0 0.5

0.4

0.45

0.5

0.55

T
r

α

Fig. 4. Multiplicative constant α versus reduced temperature
Tr = T−Tc

Tc
for the BRW applied to the spin-1/2 (•) and spin-1

(◦) Ising systems. Both functions peaks at zero, while αURW

(dashed line) is temperature independent. Note that (within

the error) αSURW ≤ α
S=1/2
BRW ≤ αS=1

BRW.

7 Returns to the origin and distinct sites
visited

In this section, we want to deal with other two characteris-
tic quantities concerning the BRW: the number of returns
to the origin Rn and of distinct sites visited Dn, after an
n-step walk. Actually, we ought to distinguish between
two regimes:

1. if n is a step number satisfying n 	 N , since the walker
will not have sampled a substantial number of sites of
the lattice, the lattice will appear to be infinite;

2. in the long time (N 	 n) the walker will appreciate the
toroidal effect due to the periodic boundary conditions.

Therefore, according to the walk-length, our results will be
compared with those analytically known and relevant to
the URW on an infinite or periodic 2-dimensional lattice,
respectively. As we will see, in both ranges, the exponents
found for Rn and Dn agree with known results, while,
as far the multiplicative factors, one has to introduce a
dependence on T .
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Fig. 5. (Color online) Average number of returns to the origin (left panel) and of distinct sites visited (right panel) versus
temperature and number of steps made by the BRW on a 240 × 240 spin-1 Ising lattice. Analogous results were found for
the spin-1/2 system, though the critical phenomena are less emphasized. Note that, as n � N , the walker can not realize the
finiteness of the lattice.
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Fig. 6. Fit parameter aD versus reduced temperature relevant
to the BRW on a 240 × 240 spin-1/2 and spin-1 Ising lattice.
Both functions exhibit a minimum at about the relevant critical
temperature (Tc ≈ 2.6 and Tc ≈ 1.96 respectively) which is
deeper in the latter case. Conversely, at low temperatures, plots
overlap.

Let us firstly consider the short time case. Known re-
sults [19,20] about the average number of returns to the
origin Rn and the number of distinct sites visited Dn, after
an n-step walk for an URW, state that:

Rn ∼ aR logn, (13)

Dn ∼ aDn

logn
, (14)

where aR and aD are constant. By fitting and compar-
ing our outcomes relevant to spin-1/2 and spin-1 systems
(Fig. 5), we find that equations (13) and (14) formally
still hold, but aR and aD are functions of the temper-
ature. More precisely, in Tc they show a maximum and
a minimum, respectively; such effect is more important
when S = 1 (Fig. 6).

When the walk-length is large enough, for the walker,
to experience the toroidal effect, we find that the number

of returns Rn recovers the URW case, being

Rn ∼ n

N
, (15)

while the number of distinct sites visited is consistent with

Dn ∼ N (1 − e−nAD ), (16)

relevant to the URW on a periodic lattice [20], provided
that AD depends on T (Fig. 8)

However, by further increasing n, the bias effect van-
ishes also for Dn which, finally, equals N .

Therefore, our results are asymptotically independent
on the temperature and on the spin magnitude, which
means that the walker looses memory of its bias.

It should be underlined that, in both regimes, the ex-
treme points recorded at Tc for Rn, as well as Dn, are
consistent with what previously found about TN and ε̃.

Analogous results are expected also for the probability
of return to the origin P0,n. In fact, we anticipate that the
BRW still recovers the unbiased exponent, with a multi-
plicative factor maximum at Tc.

Notice that recovering the conventional diffusive
regime from a significantly altered model (at least in a long
time limit) is consistent with several previous works [1,26].
The fact that our model yields diffusive behavior should
be related to the absence of strong memory effects which,
indeed, could determine an anomalous diffusion [13,14].

8 Conclusions

By the analysis performed so far, we are able to charac-
terize the BRW introduced and also to relate its behavior
with the evolution of the underlying energetic environ-
ment.

Our measures of local energy show that, according to
the algorithm introduced in Section 2, the walker aims
to move towards high energy regions, where favorable
spin-flips can occur. These regions correspond to bound-
aries between clusters, whose concentration depends on
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Fig. 7. (Color online) Average number of returns to the origin (left panel) and of distinct sites visited (right panel) versus
temperature and number of steps n made by the BRW on a 240 × 240 spin-1 Ising lattice. In this case N � n and the walker
can experience the periodic boundary conditions the lattice is endowed with. Note that the temperature dependence is now
scarcely detectable. Similar results were found for the spin-1/2 system.

the temperature, being largest around Tc. Thus, there ex-
ist a sort of temperature sensitive traps, the walker is at-
tracted to. This attraction reflects on a non-homogeneous
visit numbers distribution and also causes a slowing down
well evinced by measures of covering time, numbers of re-
turns to the origin and of distinct sites visited. In general,
these quantities asymptotically agree with results, analyt-
ically known, relevant to the URW. In particular, when
the walk-length is not so large to visit all lattice sites,
their functional forms are URW-consistent, but temper-
ature dependent multiplicative factors have to be intro-
duced. Their particular dependence on T has two main
consequences: first, the slowing down is not only due to
a non-null waiting probability, but it is mainly a conse-
quence of the bias introduced; second, the interaction be-
tween the walker and the magnetic lattice is stronger in
the critical region. More precisely, in that temperature
range, the length of borders between clusters is large so
that there are lots of high-energy sites and, contemporary,
the temperature is still not too large to have a significant
(with respect β) energy gain by spin-flips. Hence, multi-
plicative factors just peak at the critical temperature.

What has been said hitherto holds for either spin-1/2
and spin-1 systems. In fact, our analysis have been con-
temporary performed on both, in order to evidence how
the spin magnitude affects the walker diffusion on the lat-
tice. Then, our results show that peaks get sharper and
higher when the number of spin states is larger. Actually,
in the latter case, the walker has to manage with more op-
portunities and, consequently, it is further slowed down.

In summary, in the limit T → 0 (T → ∞) the under-
lying energetic landscape becomes homogeneous and the
BRW recovers the case of an ordinary unbiased random
walker endowed with a non-null waiting probability. On
the other hand, when T = Tc we record the most impor-
tant effects. In fact, Tc is an extremal point for the mul-
tiplicative factors which correct the ordinary laws. Hence,
the bias introduced determines stronger effects as the crit-
ical temperature is approached, though not affecting the
diffusive regime. Therefore the BRW behavior gives a fur-
ther evidence of the phase transition.
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Fig. 8. Fit parameter AD versus reduced temperature pertain-
ing to the BRW on a 240×240 spin-1/2 and spin-1 Ising lattice.
Note that the minimum occurs at about the critical temper-
ature (Tc ≈ 2.6 and Tc ≈ 1.96 respectively) and it is deeper
in the latter case. Conversely, at low temperatures, plots are
overlapped.

Since such corrections are more important when the
spin magnitude is larger, we argue that an investigation
in the continuum limit for S would turn out to be useful in
order to clear the nature of the above mentioned extreme
points.
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